

2017/10

Ver. 1.07

MXNET2 REMOTE API

MANUAL

1

Contents

1. Distribution Files .. 2

2. Server Installation .. 3

3. MxNet2 Server Configuration File ... 3

3.1 mxnet1.ini ... 3

4. Running MxNet2 Server ... 4

4.1 Running as an application program .. 4

4.2 Running as a Windows service .. 5

5. MxNet2 Server Failure Protection ... 6

6. How MxNet2 Server Works .. 6

6.1 rInit̲MatrixAPI & rRelease̲MatrixAPI ... 6

6.2 Session .. 7

6.3 Session Timeout ... 7

6.4 Remote API Session vs. Communication Session.. 8

6.5 rInit̲MatrixAPI & rRelease̲MatrixAPI in a Multi-threaded Program 8

6.6 License Count Management API rLogIn̲MatrixNet & rLogOut̲MatrixNet 9

6.7 Naming AppSlots ... 10

6.7 License Type : session or IP .. 12

a. Session based License SessionBaseLicense=1 ... 12

b. IP based License SessionBaseLicense=0 ... 13

6.8 Clock synchronization between the server and the clients 14

6.9 Server Log File ... 14

7. MxNet2 Error .. 16

8. Client API .. 17

7.1 RemoteAPI DLL(mxnet1̲api.dll) .. 17

Configuration file for API DLL ... 17

7.2 Static API ... 18

The static API libraries are compatible with VC compiler. .. 18

Configuration file for the static API library ... 18

8．Sample Programs ... 19

8.1 C Sample .. 19

8.2 C# Sample .. 19

9 Using Proxy Server ... 20

Client API Error / Socks Related Errors ... 21

2

1.1.1.1. Distribution FilesDistribution FilesDistribution FilesDistribution Files

+x64 (64bit Server & Client API)

+clientlib
Mxnet2̲api.dll API DLL
Mxnet2̲api.lib mxnet2̲api.dll import library for VC
Mxnet2st̲mt.lib API VC static library(/MT) for VC
Mxnet2st̲md.lib API VC static library(/MD) for VC
Mxnetapp.ini config file for client API

+server
Mxnet2.exe mxnet2 server
Mxnet2̲ui.exe UI program for server
Mxnet2̲detect.exe server failure protection program
Mxnet2.ini config file for mxnet2 server
Alerm.wav sound file for alert

+x86 (32bit Server & Client API)
the same files as under x64

+Samples

+C Sample

testDLL.sln VS2013 Solution File

+C# Sample

testcsharp.sln VS2013 Solution File

Userpass.exe
Userpass.ini

3

2.2.2.2. Server Server Server Server InstallationInstallationInstallationInstallation

The distribution ZIP file contains both 32bit and 64bit versions of the remote API
servers and clients. On 32bit Windows, use 32bit version. On 64bit Windows, you can
run either versions.

To install mxnet2 server, copy the following 4 files in “server” folder to the computer
that functions as mxnet2 server. Mxnet2 server may reside on the same computer as
the client programs. All 4 files must be copied to the same folder.

1. Mxnet2.exe (mxnet2)
2. Mxnet2̲ui.exe (GUI for mxnet2 service)
3. MxNet2̲detect.exe (failure protection service)
4. Mxnet2.ini (config. file for mxnet1)

3.3.3.3. MxNetMxNetMxNetMxNet2 Server 2 Server 2 Server 2 Server Configuration FileConfiguration FileConfiguration FileConfiguration File

Mxnet2 is a network server that accepts requests from remote API clients. When run,
MxNet2 server reads the configuration file named mxnet2.ini in the same folder. The
default port number is 12300. The default value at the client side is also 12300. In a test
environment, you may run mxnet2 out of box. In a production environment, we suggest
you modify the port value to accommodate your runtime environment.

3.1 mxnet2.ini

[Option]
#Language setting
Lang=eng

the port mxnet1 waits on
Port=12300

4

LogIn̲MatrixNet Timeout in second
LoginTimeOut=300

#Init̲MatrixAPI Timeout in second
SessionTimeOut=3000

#License type
AppSlot license is either per IP or per session
SessionBaseLicense=1

#LogFile folder
LogFileFolder=
LogLevel=0

4.4.4.4. Running Running Running Running MxNetMxNetMxNetMxNet2222 ServerServerServerServer

 Mxnet2.exe may be run either as an application program or as a Windows service.

4.1 Running as an application program
Just double-click Mxnet2.exe and it will display a yellow key icon in the system tray.

a. To terminate the program, right-click the icon and select “Exit”

b. “Display Connection Status” will display a window showing the details on the

5

currently connected clients and login status. In this window, you can manually
disconnect active sessions and active logins to AppSlot.

4.2 Running as a Windows service

Firewall SettingFirewall SettingFirewall SettingFirewall Setting
Before running Mxnet2 as a Windows service, be sure that the port Mxnet2 waits on is
not blocked by the firewall. Even if the port is blocked, Mxnet2 service will run normally;
no client can connect to it.

You must register Mxnet2 as a Windows service to run it as a service. For the service
registration, you must be elevated to an administrative user. Open a command prompt as
Administrator, change the current directory to where mxnet2.exe is located and type the
following command.

 Mxnet2 install [enter]

This will register Mxnet2 as a Windows service and run it as a Windows service.

IIIImportantmportantmportantmportant：：：：Registering a program as a Windows service will Registering a program as a Windows service will Registering a program as a Windows service will Registering a program as a Windows service will only only only only save the program pathsave the program pathsave the program pathsave the program path in in in in
the registrythe registrythe registrythe registry. Do not . Do not . Do not . Do not movemovemovemove or delete the programor delete the programor delete the programor delete the program filefilefilefile. If you do. If you do. If you do. If you do, the registered service will , the registered service will , the registered service will , the registered service will
not run. not run. not run. not run. Do not place Do not place Do not place Do not place Mxnet2 Mxnet2 Mxnet2 Mxnet2 on on on on removable diskremovable diskremovable diskremovable disks; they are usually not ready for use at the s; they are usually not ready for use at the s; they are usually not ready for use at the s; they are usually not ready for use at the
time Windows starts services.time Windows starts services.time Windows starts services.time Windows starts services.

The running instance of mxnet2 service will display mxnet2 yellow icon in the system tray
just as mxnet2 is run as an application program. This icon is displayed, not by the
Windows service, but by another program, mxnet2̲ui.exe. This UI program communicates
with mxnet2 service. By right-clicking the icon, you can exit the program. This does not
stop or terminate Mxnet2 service; it just terminates the UI program. While the service is
running, you can run mxnet2̲ui.exe manually at any time.

MxNet2 as a Windows service can be de-registered by the following command. Open a
command prompt as Administrator and run the command.

 Mxnet1 remove [enter]

6

5. MxNetMxNetMxNetMxNet2 Server 2 Server 2 Server 2 Server Fault Fault Fault Fault ToleranceToleranceToleranceTolerance

 To deliver high availability, mxnet2 comes with another service program that ensures
that mxnet2 be always running. This auxiliary service continually queries Mxnet2 for
response. When no response is returned, it automatically restarts mxnet2 service.
 The service program file is named Mxnet1̲detect.exe. For the program to restart
mxnet2 server, it must be in the same folder as MxNet2.exe.
 When Mxnet2̲detect re-starts MxNet2, no response to a query might be returned
due to critical failures. This signals mxnet2 failure. If the auxiliary service cannot restart
Mxnet2 successfully, it will play the sound file named alerm.wav in the same folder for
audible alert till you stop the service or manually recover MxNet2 server to a running
state.

To register Mxnet1̲detect as a Windows service: >mxnet1̲detect -i

To remove Mxnet1̲detect as a Windows Service: >mxnet1̲detect -r

You do not have to start/stop both MxNet2 and the auxiliary service manually. Stopping
mxnet2̲detect service will automatically stop mxnet2 server. Starting xnet2̲detect
service will likewise start mxnet2 server.

6.6.6.6. How How How How MxNetMxNetMxNetMxNet2222 Server WorksServer WorksServer WorksServer Works

You can call Remote API just the same way as Matrix API.

But unlike Matrix API client that directly interacts with the dongle, Remote API clients
communicate with the remote Mxnet2 server over a communication channel. This can
complicate the use of remote API.

6.16.16.16.1 rInirInirInirInit̲MatrixAPIt̲MatrixAPIt̲MatrixAPIt̲MatrixAPI & rRelease̲MatrixAPI& rRelease̲MatrixAPI& rRelease̲MatrixAPI& rRelease̲MatrixAPI

 In Remote API, a call to rInit̲MatrixAPI will start a new session with Mxnet2 server.
rRelease̲MatrixAPI will release/close the session. If you do not start a session by a call
to rInit̲MatrixAPI, all the other APIs will fail. The server only accepts requests from a

7

client with an open session to the server.
 By calling rInit̲MatrixAPI, the client establishes a session (one like HTTP session)
with the server. It saves the client information and returns a session identifier to the client.
Any subsequent remote API calls by the client will internally carry this identifier.
rRelease̲MatrixAPI call will de-allocate the client session information on the server and
invalidates the session identifier. If a client does not call rRelease̲MatrixAPI before
terminating, the clientʼs session information will be held alive on the server till the session
timeout handler deletes it.

6.26.26.26.2 SSSSessionessionessionession

A session is started by rInit̲MatrixAPI. Every time a client calls rInit̲MatrixAPI, a new
session is started.

1. The server collects the information on the client.
2. The server and a client agree on the session password
3. The server assigns a session ID to the client
4. A session is released by rRelease̲MatrixAPI

6.36.36.36.3 Session TimeoutSession TimeoutSession TimeoutSession Timeout

After a session is started, each API call will update the sessionʼs last access time on the
server. A session will time out if the difference between the last access time and the
current time is over the specified session timeout value. If the timeout value is 180 sec
(3 min) and a client does not call any remote API for over 180 sec, then, the session will
be closed. The next API call to the server by the client will fail unless the client calls
rInit̲MatrixAPI and starts a new session.

When the session timeout value is too small, the server may release a session while the
client is still alive. When the session timeout value is too big, zombie sessions will live on
long. Zombie sessions do no harm to the server. But they makes extremely difficult
(nearly impossible) to tell which sessions are actually alive or dead.

The default value for the session timeout is 3600sec(1 hour).

Zombie sessions can be removed manually in “Display Connection Status” window, by

8

selecting a session and press “Logout” button.

6.46.46.46.4 Remote API Remote API Remote API Remote API Session Session Session Session vs. vs. vs. vs. Communication SessionCommunication SessionCommunication SessionCommunication Session

The session started by rInit̲MatrixAPI is different from the communication session.
Mxnet2 session is just like http session. Each API will open a communication channel,
send a command to the server, receive a response and shut down the communication
channel. Communication sessions are not kept open between API calls.

Remote API session refers to the state in which the server can identify a client between
API calls by holding the common data with the client. When the server one-sidedly
releases the session data of a live client, the session is erased; the server no longer can
identify the client. In such a case, the client must start a new session by calling
rInit̲MatrixAPI or any other API call will fail.

Before a client terminates, be sure to close an open session; it will immediately release
the client session data from the server and avoid zombie session being kept alive on the
server.

6.56.56.56.5 rInit̲MatrixAPIrInit̲MatrixAPIrInit̲MatrixAPIrInit̲MatrixAPI & rRelease̲MatrixAPI& rRelease̲MatrixAPI& rRelease̲MatrixAPI& rRelease̲MatrixAPI in a Min a Min a Min a Multiultiultiulti----threaded threaded threaded threaded PPPProgramrogramrogramrogram

A session is created for a process; it is not initiated for every thread that calls
rInit̲MatrixAPI. Once a session is created for a process, all threads in the process will
share one(1) open session.
When multiple threads in a process call rInit̲MatrixAPI, the first rInit̲MatrixAPI call will
be sent to the server and a new session is created. While the session is alive, any
subsequent calls to rInit̲MatrixAPI by any threads in the process will not start a new
session. Such rInit̲MatrixAPI calls will not be even sent to the server; only the internal
counter in the client API library is incremented. The internal counter keeps the call
count of rInit̲MatrixAPI.
Conversely, a call to rRelease̲MatrixAPI will only decrement the internal counter by one
when the internal counter is greater than 1. A call to rRelease̲MatrixAPI, when the
counter is equal to 1, will be sent to the server and releases the client session.

9

Resetting the internal counter
In some cases, you may have to reset the internal counter. Suppose that, after 2 threads
have called Init̲MatrixAPI which have set the internal counter value to 2, the clientʼs
session data on the server is inadvertently released. The client no longer has a session
with a server. It must start a new session by calling rInit̲MatrixAPI. But with the internal
counter set to 2, no new session can be created; it will only increment the counter to 3.
The internal counter must be 0 to start a new session.
One way to reset the counter would be to keep calling rRelease̲MatrixAPI till the return
value is 0. Alternatively, you can all the counter reset API, Reset̲MatrixAPI(). This will
unconditionally reset the counter to 0. After the call to the reset API, rInit̲MatrixAPI will
start a new session

void __stdcall rReset_MatrixAPI(void);

[DllImport("mxnet1_api.DLL", EntryPoint = "rReset_MatrixAPI", CallingConvention =

CallingConvention.StdCall)]

public static extern void rReset_MatrixAPI();

6.66.66.66.6 LLLLicense Count Management APIicense Count Management APIicense Count Management APIicense Count Management API rLogIn̲MatrixNet & rLogOut̲MatrixNetrLogIn̲MatrixNet & rLogOut̲MatrixNetrLogIn̲MatrixNet & rLogOut̲MatrixNetrLogIn̲MatrixNet & rLogOut̲MatrixNet
Remote API has rLogIn̲MatrixNet AP. It works the same way as Matrix LogIn̲MatrixNet.
Matrix dongleʼs memory fields(AppSlot) hold license counts. A call to LogIn̲MatrixNet
will decrement the specified AppSlotʼs license count by one. The next call from the same
process to LogIn̲MatrixNet will not decrement the license count; this time, it will only
refresh the login to the same AppSlot. Once logged in, the client must keep calling
LogIn̲MatrixNet periodically to hold on the license acquired by the first call to
LogIn̲MatrixNet. If it fails to refresh the login within a specific timeout interval, the login
timeout handler will remove the client login and increment the AppSlot license count(the
client is logged out)

A call to rLogOut̲MatrixNet will increment the specified AppSlotʼs license count.

The login timeout handler prevents license count exhaustion by dead sessions. If zombie
sessions continue to hold the licenses, a live session will not be able to acquire a new
license. The login timeout handler periodically scans the last login refresh time of each
session and log off the sessions that have not refreshed the login by a call to
LogIn̲MatrixNet within a timeout interval.

10

After the first call rLogIn̲MatrixNet to acquire a license, a session must keep calling
rLogIn̲MatrixNet periodically to avoid losing the license. The default value of the timeout
is 300sec(5 min). You need to call rLogIn̲MatrixNet at least once in 300 sec.

The above description shows that you do not call rLogIn̲MatrixNet and
rLogOut̲MatrixNet in pair, unlike open and close. Multiple calls to rLogIn̲MatrixNet at
a specified AppSlot will only decrement the license count by one while a call to
rLogOut̲MatrixNet will always increment the license count by one.

Example:
A thread A in a multi-threaded program calls rLogIn̲MatrixNet on AppSlot10. The
process will acquire a license from the AppSlot. Another call to rLogIn̲MatrixNet by
another thread B will only refresh the login. A little later, the thread B calls
rLogOut̲MatrixNet and the process will release the license. Another call to
rLogOut̲MatrixNet by the thread A will result in error(-11), because the process no
longer has a license at that point.

6666.7 .7 .7 .7 Naming Naming Naming Naming AppSlotAppSlotAppSlotAppSlotssss
“Display Connection Status” window shows the list of which clients currently have
sessions and which AppSlots each client logs in to.

By default, mxnet2 shows Dongle and AppSlot as “DongleX” and “AppSlotX” where x is
a number like

Client3
 Dongle1 AppSlot5
 Dongle1 AppSlot6

In this example, Client3 has a session and it has acquired a license each from AppSlot5
and AppSlot6 of Dongle1 ‒ the first dongle detected by mxnet2.

You can assign arbitrary strings to dongles and AppSlots to help identify them. After you
name them, mxnet2 will display the assigned string instead of DongleX/AppSlotX.

11

 Client3
 MyDongle FooApplication
 MyDongle BarApplication

To name a dongle and its AppSlot, create a section named [dongleX] where X is a number
starting from 1. Under the section, create SerNr, Name and Slot Number keys.

[dongle1]
Sernr=1234567890
Name=MyDongle
5=Foo Application #AppSlot5 is named “Foo Application”
6=Bar Application #AppSlot6 “Bar Application”

[dongle2]
Sernr=1234567891
Name=MyDongle1
10= App10
11= App11

“Sernr” and “Name” keys are optional. mxnet2 searches [DongleX] sections and sees if
there is a section with “Sernr” key whose values matches the current dongle. If it finds
one, mxnet2 uses the section for string assignment. If it does not, mxnet2 uses the
section with the value of “DongleX” where x is DngNr of the current dongle. If it does not
find any section, then the dongle name will be “DongleX” (where X is DngNr) and
“AppSlotX” (where x is the slot number).

[dongleX] is the section name wherer x increments sequentially. Do not skip a number.
Mxnet2 tries to read DongleX section sequentially and stops reading when the next
number is not found.

[dongle1]
[dongle2]
[dongle4]

Mxnet2 will read the first two(2) sections and stop reading. It will not read [dongle4].

12

6.76.76.76.7 LLLLicense Typeicense Typeicense Typeicense Type : session or IP: session or IP: session or IP: session or IP

MxNet2 will use either the session identifier or IP address to identify a client for the
login purpose. By default, it uses the session identifier for clientʼs identity.
MxNet2.ini has SessionBaseLicense=1 as the default.

a. Session based License SessionBaseLicense=1

A process (session) will acquire a license from a specified AppSlot. When multiple
processes are running on a computer, each process will decrement the license count of
a AppSlot.

PC A

Process A AppSlotN
 thread1
 thread2
 thread 3
Process B
 thread1
 thread2

- Thread 1 in the process A on PC calls rLogIn̲MatrixNet. It will decrement
the AppSlot counter. Client API libraryʼs internal counter is also
incremented.

- Thread 2 in the process A on PC calls rLogIn̲MatrixNet. No request is sent
to the server. Client API libraryʼs internal counter is incremented to 2.

- Thread 3 in the process A on PC calls rLogIn̲MatrixNet. No request is sent
to the server. Client API libraryʼs internal counter is incremented to 3.

- Thread 2 in the process A on PC calls rLogOut̲MatrixNet. No request is
sent to the server. Client API libraryʼs internal counter is decremented to 2.

- Thread 3 in the process A on PC calls rLogOut̲MatrixNet. No request is
sent to the server. Client API libraryʼs internal counter is decremented to 1.

13

- Thread 1 in the process A on PC calls rLogOut̲MatrixNet. A request is sent
to the server and the session is closed. The Internal counter is also
decremented to 0.

- Threads in Process B behaves the same way

b. IP based License SessionBaseLicense=0

Mxnet2 will identify clients by IP address. When multiple processes are running on a
computer and they call rLogIn̲MatrixNet, the first call by any processes on the
computer will decrement AppSlot license and the subsequent calls by any processes
will refresh the login. The requests from the processes on the same computer have the
same IP address and mxnet2 treats them as if they were from the same client.

rLogOut̲MatrixNet works differently from Session based license scheme. When
multiple processes on the same computer calls rLogIn̲MatrixNet, mxnet2 server keeps
the record of each client. AppSlot count is managed not by the session identifier but by
IP address. MxNet2 scans the record of all client sessions and if there is no session
with the same IP, AppSlot license is decremented by one. If a session with the same IP
exists, MxNet2 refreshes the login time. When a client calls rLogOut̲MatrixNet, it will
scan the existing client session record to see if there is a session with the same IP; if
there is, it will not not increment AppSlot license. Mxnet2 increments AppSlot license
when a request comes from a client whose IP is not found in any other login records.

PC A AppSlotN
 Process1(IP1)
 Process2(IP1)
 process３(IP1)

- Process 1 on PC calls rLogIn̲MatrixNet. It will decrement AppSlot license
- Process 2 on PC calls rLogIn̲MatrixNet. The call will only refresh IP1ʼs

login. Mxnet2 will save the record of process2ʼs login
- Process3 on PC calls rLogIn̲MatrixNet. The call will only refresh the IP1ʼs

login. Mxnet2 will save the record of process3ʼs login

14

- Process2 on PC calls rLogOut̲MatrixNet. Since there are other login record
with IP1, this will only remove Process2ʼs login record

- Process1 on PC calls rLogOut̲MatrixNet. There are still login records with

IP1. This will only delete Process1ʼs login record.
- Process3 on PC calls rLogOut̲MatrixNet. Process3ʼs record is the only

login record with IP1. This will remove Process3ʼs record and AppSlot
license count is incremented

-
Just with Session Based License, rLogIn̲MatrixNet / rLogOut̲MatrixNet calls by each
process may or may not be sent to the server; Client APIʼs internal counter keeps the
call count.

6.86.86.86.8 Clock synchronization between the server and the clientsClock synchronization between the server and the clientsClock synchronization between the server and the clientsClock synchronization between the server and the clients
The requests from the clients to the server are time-stamped. The server will try to
verify that the client request is issued within a specified time interval. If the request is
more than 60 seconds old, the server will reject the request.

You can specify the command interval time by CmdIssueTimeIntervalCmdIssueTimeIntervalCmdIssueTimeIntervalCmdIssueTimeInterval key in the server
configuration. Give a time value in second to the key

If the server clock and the client clock cannot be synchronized, you can disable the
request time-stamp verification. Give 0 to CheckCmdIssueTime in the server
configuration file.

Mxnet2.ini
[option]
CheckCmdIssueTimeCheckCmdIssueTimeCheckCmdIssueTimeCheckCmdIssueTime=0

6.96.96.96.9 SSSServer Log Fileerver Log Fileerver Log Fileerver Log File

Mxnet2 can create log files in a specified folder. In the server configuration file, specify

the folder name using LogFileFolder key.

[Option]

15

LogFileFolder=c:¥folder

LogLevel=0

Mxnet2 will create log files whose name will be in the following format.

 mxnetYYYY-MM-DD.log

where YYYY-MM-DD is the date when the logs are written. Mxnet2 creates different log

files on each different date.

By default, mxnet2 will log the error records. By specifying LogLevel in the configuration,

more details logs may be recorded

[option]

LogLevel=1 information log

LogLevel=2 debug log

16

7.7.7.7. MxNetMxNetMxNetMxNet2 Error2 Error2 Error2 Error

EEEError Norror Norror Norror No DescriptionDescriptionDescriptionDescription

-100
Connect Error
Cannot connect to MxNet2 server

-102 No Matrix dongle connected

-104 Request time-stamp error

-105 Session password error

-106 Packet length error

-107 Packet header error

-108 Unknow Command

-115 Packet Number error

-116 Client library does not have a session with the server

-122 Packet version error

This is not an exhaustive list of errors.

Error -100 is the most common error. It is returned when the client cannot connect to
the server. This is returned for various reasons; the server may not be running, the port
on the server computer is closed, the ports specified by the client and by the server is
different, the server IP address specified by the client is not correct, etc.

17

8.8.8.8. CCCClientlientlientlient APIAPIAPIAPI

A program that integrates Remote API must use DLL or static client libraries.

7.1 RemoteAPI DLL(mxnet1̲api.dll)
If your program is written in a language that require the use of DLL, you can use DLL as
provided or create a wrapper DLL using the static libraries. The API in the supplied DLL
conforms to ̲̲pascal calling convention; some languages may require DLL functions to
follow ̲cdecl convention.

.NET program can import the supplied DLL using InteropServices. Please refer to C#
sample.

Configuration file for API DLL
When DLL is loaded, it will read the configuration file, mxnetapi.ini, in the same folder
as the DLL. It uses the server IP address and the port specified in the configuration file.

[Options]
MxNet2 server IP address
ip=127.0.0.1

MxNet2 Server Port
port=12300

Connect timeout(in millsec）
timeout=3000

remote=1 ... connect to MxNet1
remote=0 ... access to the local dongle
remote=1

18

7.7.7.7.2 2 2 2 Static Static Static Static API API API API
The static API libraries are compatible with VC compiler.

Configuration file for the static API library
The static libraries also read the configuration file named “mxnetapi.ini” in the same
folder as the program that is linked with the remote API library for the optional values
like the server IP address and the port. You can use the same Mxnetapi.ini both for
DLL and static libraries.

7.3 Run7.3 Run7.3 Run7.3 Run----time Configtime Configtime Configtime Configurationurationurationuration
The following APIs will override the optional values set in the configuration file.

_mxINT32 WINAPI MxNet_SetPort(_mxINT32 _port)

 Set the server socket port(“port”) to _port

_mxINT16 WINAPI rSetConfig_MatrixNet(_mxINT16 nAccess, char* nFile)

- nAccess = 1 set “remote” to 1.

Set either the server computername or IP address to nFile

- nAccess = 0 set “remote” to 0

-

WCHAR* WINAPI MxNet_SetIP(WCHAR* _ip)

 Set the server IP (“ip”) address to _ip

_mxINT32 WINAPI MxNet_SetTimeOut(_mxINT32 nTimeOut)

 Set the connect timeout (“timeout”)to nTimeOut

rInit̲MatrixAPI will connect to mxnet2 server using the values set by these API. Thus,
you must call them before rInit̲MatrixAPI.

19

8888．．．．SSSSample Programsample Programsample Programsample Programs

8.1 C Sample
In Samples\C Sample\testDLL folder, you find the solution file, testDLL.sln and the
project folders. The output of each project will be Release or x64\release.

The executable files, testDLL, testSt.exe, testMD.exe, will be generated, linking these
different libraries (import / MT / MD)

The sample program is multi-threaded; it starts several threads. Each thread calls the
same test routine repeatedly. Try to run multiple instances of the sample program.

8.2 C# Sample
.NET program must import API from API DLL.

.NET programs built with the platform target set to “Any CPU” will run as 64bit program
on 64bit Windows and 32bit programs on 32bit Windows. Since 32bit program cannot
be used with 64bit DLL and vice versa, be sure to install the right DLL.

When you build a program with the platform target set to “x86”, then, the program
always run as 32bit program. With “x64”, it will always run as 64bit program.

20

9 9 9 9 Using Proxy ServerUsing Proxy ServerUsing Proxy ServerUsing Proxy Server

The client API can connect to Mxnet2 server via SOCK5 proxy server.

 Port 1080 Port 12300

 Client SOCK5 Proxy mxnet2

In the client configuration file, create a new section [SOCKSSERVER]. Under the
section, specify the IP and port of the proxy server.

[SocksServer]
Port=1080 (SOCKS5 proxy server Port)
IP=127.0.0.1 (SOCKS5 proxy server IP)

[Options]
ip=127.0.0.1
port=12300

If SOCKS5 server requires the user/password authentication, give an encrypted string
value to UserPass key

[SocksServer]
Ip=(SOCKS5server IP)
Port=(SOCKS5server port)
UserPass=(encrypted user / pass)

You can generate the encrypted user/pass string using userpass.exe included in the
distribution file.

21

Enter SOCK5 proxy server username and password and press [OK]. The encrypted
string will be shown in the lower box. Copy the string and set it to “userpass” key.

Client API Error / Socks Related Errors

EEEError Norror Norror Norror No DescriptionDescriptionDescriptionDescription

-200 SOCKS Version error

-201 SOCKS does not support authentication

-202 SOCKS authentication error

-203 Send error

-204 Receive error

-205 Socket error(WSAEventSelect)

-206 Socket error(WSAEnumNetworkEvents)

22

-200 SOCKS Version error

-201 SOCKS does not support authentication

-202 SOCKS authentication error

-203 send error

-204 receive error

-205 Socket error(WSAEventSelect)

-206 Socket error(WSAEnumNetworkEvents)

